
Supplementary Tables

method output
transc.
abund.?

bias correction
options

details

mseq, Li et al. 1 no read start Output is a bias model, which can be used
to predict read starts on new transcript
sequence. Trains a multiple additive re-
gression tree (MART) on local sequence
surrounding read starts, using those reads
which align to single-isoform genes.

MISO, Katz et al. 2 no fragment length Outputs and tests relative isoform abun-
dance for multi-isoform genes. Bayesian
model with Dirichlet prior on relative iso-
form abundance. Can incorporate frag-
ment length distribution.

Cufflinks, Roberts et al. 3 yes fragment length,
positional, read
start

Fits a 21-bp variable length Markov
model (VLMM) to the local sequence sur-
rounding read starts using those frag-
ments from single-isoform genes. Posi-
tional bias for 20 bins along transcript is
fit for 5 transcript length classes.

RSEM, Li et al. 4 yes fragment length,
positional

Fits a model of positional bias using the
empirical distribution of read starts along
transcripts.

Sailfish, Patro et al. 5 yes fragment length,
read start

Previous versions offered post-hoc GC
correction based on transcript GC con-
tent6. This has been deprecated and the
latest version (0.9.0) offers read start bias
correction to account for random hexamer
priming. Same applies to Salmon.

kallisto, Bray et al. 7 yes fragment length,
read start

Offers read start bias correction using a
method based on that of Cufflinks.

Salmon, Patro et al. 8 yes fragment length,
positional, read
start

For Salmon 0.6.0, see note for Sailfish.

alpine yes fragment length,
read start, posi-
tional, fragment
GC, stretches of
GC within frag-
ment

Poisson generalized linear model to fit
bias coefficients, see Methods.

Supplementary Table 1: Description of bias correction options offered by various methods under
evaluation. See Figure 1a for diagram of various biases arising in RNA-seq. The second column re-
ports whether the software provides transcript abundance estimates (one value for every transcript)
as output. For methods with multiple citations, the citation above describes the bias correction
methodology.



pop center assay sample experiment run
TSI UNIGE NA20503.1.M 111124 5 ERS185497 ERX163094 ERR188297
TSI UNIGE NA20504.1.M 111124 7 ERS185242 ERX162972 ERR188088
TSI UNIGE NA20505.1.M 111124 6 ERS185048 ERX163009 ERR188329
TSI UNIGE NA20507.1.M 111124 7 ERS185412 ERX163158 ERR188288
TSI UNIGE NA20508.1.M 111124 2 ERS185362 ERX163159 ERR188021
TSI UNIGE NA20514.1.M 111124 4 ERS185217 ERX163062 ERR188356
TSI UNIGE NA20519.1.M 111124 5 ERS185167 ERX162948 ERR188145
TSI UNIGE NA20525.1.M 111124 1 ERS185212 ERX163022 ERR188347
TSI UNIGE NA20536.1.M 111124 1 ERS185156 ERX163042 ERR188382
TSI UNIGE NA20540.1.M 111124 2 ERS185349 ERX162940 ERR188436
TSI UNIGE NA20541.1.M 111124 4 ERS185125 ERX163043 ERR188052
TSI UNIGE NA20581.1.M 111124 4 ERS185181 ERX162937 ERR188402
TSI UNIGE NA20589.1.M 111124 3 ERS185057 ERX162793 ERR188343
TSI UNIGE NA20757.1.M 111124 1 ERS185169 ERX162732 ERR188295
TSI UNIGE NA20761.1.M 111124 7 ERS185420 ERX163049 ERR188479
TSI CNAG CRG NA20524.2.M 111215 8 ERS185498 ERX162769 ERR188204
TSI CNAG CRG NA20527.2.M 111215 7 ERS185082 ERX163033 ERR188317
TSI CNAG CRG NA20529.2.M 111215 6 ERS185422 ERX162984 ERR188453
TSI CNAG CRG NA20530.2.M 111215 6 ERS185442 ERX163025 ERR188258
TSI CNAG CRG NA20534.2.M 111215 8 ERS185144 ERX162843 ERR188114
TSI CNAG CRG NA20543.2.M 111215 5 ERS185134 ERX163170 ERR188334
TSI CNAG CRG NA20586.2.M 111215 7 ERS185426 ERX162880 ERR188353
TSI CNAG CRG NA20758.2.M 111215 8 ERS185342 ERX162819 ERR188276
TSI CNAG CRG NA20765.2.M 111215 5 ERS185306 ERX162794 ERR188153
TSI CNAG CRG NA20771.2.M 111215 7 ERS185108 ERX163165 ERR188345
TSI CNAG CRG NA20786.2.M 111215 8 ERS185069 ERX162761 ERR188192
TSI CNAG CRG NA20790.2.M 111215 6 ERS185378 ERX163152 ERR188155
TSI CNAG CRG NA20797.2.M 111215 6 ERS185263 ERX162729 ERR188132
TSI CNAG CRG NA20810.2.M 111215 7 ERS185427 ERX162968 ERR188408
TSI CNAG CRG NA20814.2.M 111215 6 ERS185127 ERX163109 ERR188265

Supplementary Table 2: GEUVADIS samples used in this paper. CNAG CRG was coded as center
1 and UNIGE was coded as center 2 in the text. The data consisted of paired-end reads of length
75 bp. Sequencing centers used the same library construction protocol for all samples. Full details
of the library construction protocol can be found by searching the European Nucleotide Archive
using any of the experiment IDs in the table (for example, searching for ERX163094)

Number of isoforms: 2 3 4 5-8 9-12 13+ Sum

Cufflinks changes 169 155 103 160 19 13 619
Cufflinks total 2867 1682 932 1096 142 42 6761

RSEM changes 173 157 107 163 25 12 637
RSEM total 2955 1687 947 1105 147 42 6883

Supplementary Table 3: Number of genes with changes in major isoform. Considering genes which
have more than one isoform, and which had estimated FPKM greater than 0.1 in at least one
isoform (total), shown is the number of genes for which the isoform with highest average FPKM
was different across centers.



sample site library runs

A BGI 1 SRR:896663,896665,896667,896669,896671,896673,896675,896677
A BGI 2 SRR:896679,896681,896683,896685,896687,896689,896691,896693
A BGI 5 SRR:896727,896729,896731,896733,896735,896737,896739,896741
B BGI 1 SRR:896743,896745,896747,896749,896751,896753,896755,896757
B BGI 2 SRR:896759,896761,896763,896765,896767,896769,896771,896773
B BGI 5 SRR:896807,896809,896811,896813,896815,896817,896819,896821
C BGI 1 SRR:896823,896825,896827,896829,896831,896833,896835,896837
C BGI 2 SRR:896839,896841,896843,896845,896847,896849,896851,896853
C BGI 5 SRR:896887,896889,896891,896893,896895,896897,896899,896901
D BGI 1 SRR:896903,896905,896907,896909,896911,896913,896915,896917
D BGI 2 SRR:896919,896921,896923,896925,896927,896929,896931,896933
D BGI 5 SRR:896967,896969,896971,896973,896975,896977,896979,896981
A CNL 1 SRR:897047,897049,897051,897053,897055,897057,897058,897060
A CNL 2 SRR:897062,897064,897066,897068,897070,897072,897073,897075
A CNL 5 SRR:897107,897109,897111,897113,897115,897117,897118,897120
B CNL 1 SRR:897122,897124,897126,897128,897130,897132,897133,897135
B CNL 2 SRR:897137,897139,897141,897143,897145,897147,897148,897150
B CNL 5 SRR:897182,897184,897186,897188,897190,897192,897193,897195
C CNL 1 SRR:897197,897199,897201,897203,897205,897207,897208,897210
C CNL 2 SRR:897212,897214,897216,897218,897220,897222,897223,897225
C CNL 5 SRR:897257,897259,897261,897263,897265,897267,897268,897270
D CNL 1 SRR:897272,897274,897276,897278,897280,897282,897283,897285
D CNL 2 SRR:897287,897289,897291,897293,897295,897297,897298,897300
D CNL 5 SRR:897332,897334,897336,897338,897340,897342,897343,897345
A MAY 1 SRR:897407,897409,897411,897413,897415,897417,897419,897421
A MAY 2 SRR:897423,897425,897427,897429,897431,897433,897435,897437
A MAY 5 SRR:897471,897473,897475,897477,897479,897481,897483,897485
B MAY 1 SRR:897487,897489,897491,897493,897495,897497,897499,897501
B MAY 2 SRR:897503,897505,897507,897509,897511,897513,897515,897517
B MAY 5 SRR:897551,897553,897555,897557,897559,897561,897563,897565
C MAY 1 SRR:897567,897569,897571,897573,897575,897577,897579,897581
C MAY 2 SRR:897583,897585,897587,897589,897591,897593,897595,897597
C MAY 5 SRR:897631,897633,897635,897637,897639,897641,897643,897645
D MAY 1 SRR:897647,897649,897651,897653,897655,897657,897659,897661
D MAY 2 SRR:897663,897665,897667,897669,897671,897673,897675,897677
D MAY 5 SRR:897711,897713,897715,897717,897719,897721,897723,897725

Supplementary Table 4: SEQC samples used in this paper. Sample A is Universal Human Reference
RNA, sample B is Human Brain Reference RNA, sample C and D are a 3:1 mix and a 1:3 mix of A
and B, respectively. Libraries 1 and 2 were prepared and sequenced at the site listed in the second
column, while library 5 was prepared at a separate, fourth site and sequenced at the site listed in
the second column. All the runs for a given experiment were combined to produce a single pair of
FASTQ files. The data consisted of paired-end reads of length 100 bp.



sample protocol experiment runs
A ribo-depletion SRX307081 SRR:903050,903054,903056
A ribo-depletion SRX307082 SRR:903059,903065,903061
A ribo-depletion SRX307083 SRR:903066,903072,903069
A ribo-depletion SRX307084 SRR:903074,903077,903078
B ribo-depletion SRX307085 SRR:903087,903089,903088
B ribo-depletion SRX307086 SRR:903097,903090,903094
B ribo-depletion SRX307087 SRR:903101,903099,903103
B ribo-depletion SRX307088 SRR:903109,903106,903112
C ribo-depletion SRX307089 SRR:903114,903119,903120
C ribo-depletion SRX307090 SRR:903129,903122,903125
C ribo-depletion SRX307091 SRR:903137,903131,903133
C ribo-depletion SRX307092 SRR:903138,903140,903145
D ribo-depletion SRX307093 SRR:903147,903151,903153
D ribo-depletion SRX307094 SRR:903160,903155,903156
D ribo-depletion SRX307095 SRR:903165,903162,903167
D ribo-depletion SRX307096 SRR:903175,903177,903173
A poly-A selection SRX307097 SRR:903185,903178,903179
A poly-A selection SRX307098 SRR:903193,903192,903188
A poly-A selection SRX307099 SRR:903196,903201,903200
A poly-A selection SRX307100 SRR:903205,903206,903202
B poly-A selection SRX307101 SRR:903216,903211,903213
B poly-A selection SRX307102 SRR:903220,903223,903219
B poly-A selection SRX307103 SRR:903231,903228,903230
B poly-A selection SRX307104 SRR:903234,903238,903235
C poly-A selection SRX307105 SRR:903249,903247,903244
C poly-A selection SRX307106 SRR:903250,903254,903255
C poly-A selection SRX307107 SRR:903263,903259,903258
C poly-A selection SRX307108 SRR:903269,903268,903267
D poly-A selection SRX307109 SRR:903281,903277,903275
D poly-A selection SRX307110 SRR:903286,903288,903287
D poly-A selection SRX307111 SRR:903291,903294,903292
D poly-A selection SRX307112 SRR:903305,903304,903298

Supplementary Table 5: Information on the ABRF samples used in this paper. Sample A is
Universal Human Reference RNA, sample B is Human Brain Reference RNA, sample C and are a
3:1 mix and a 1:3 mix of A and B, respectively. The runs for each experiment were combined to
produce a single pair of FASTQ files. The data consisted of paired-end reads of length 50 bp.



Supplementary Figures

Supplementary Figure 1: Volcano plot of a comparison of RSEM transcript estimates across center.
2,829 transcripts had Benjamini-Hochberg adjusted p value less than 1% and 892 had family-wise
error rate of 1% using a Bonferroni correction, out of 26,057 transcripts with FPKM estimate
greater than 0.1.



Supplementary Figure 2: Estimated bias parameters for the IVT-seq dataset. (Left) The 0-order
terms of the read start bias model estimated for the 5’ fragment end for one sample of the IVT-seq
dataset. The 0-order terms are shown for visual simplicity, although the variable length Markov
model (VLMM) used here and proposed by Roberts et al. 3 has higher order (1- and 2-order) Markov
dependence for the middle positions. Both 5’ and 3’ end biases are combined for the read start bias
calculation. (Middle) The estimated fragment length distributions for IVT-seq samples. (Right)
The dependence of fragment rate on fragment GC content for IVT-seq samples. The curves were fit
for the model with all terms, therefore representing the GC content dependence after removing read
start bias and fragment length bias (which are pre-calculated and included as offsets, see Methods).



Supplementary Figure 3: Test set prediction of coverage for four IVT-seq transcripts for the follow-
ing models: “read start”: the Cufflinks VLMM for read starts implemented within alpine, the mseq
model for read starts, “GC”: a model using fragment GC content, “GC+str”: as in “GC” plus
additional terms for stretches of high GC within the fragment, “all”: the VLMM for read starts in
addition to the terms in “GC+str”. Predicted coverage (black lines) and raw fragment coverage
(colored lines) is shown for four different bias models and four transcripts: BC000158, BC011047,
BC011377 and BC011380 (top left, top right, bottom left, bottom right), and for all eight samples
(rows within each panel, where color denotes sample condition). Test set mean squared error was
calculated by averaging the squared residuals from the predicted to the observed coverage.



Supplementary Figure 4: Comparison of the reduction in test set mean squared error (MSE) for all
64 transcripts identified by Lahens et al. 9 for five models, split for each of eight IVT-seq samples. A
value of 1 would indicate that all of the test-set error from a uniform coverage model was removed,
while 0 would indicate the same error as a uniform coverage model. In all scatterplots, the y-axis
shows the reduction in MSE for the model “GC + stretches” modeling both fragment GC content
and high GC stretches. The x-axis shows (from left to right) the reduction in MSE for the Cufflinks
VLMM for read starts, mseqx, the fragment GC content model (without GC stretches), and the
model with the VLMM for read starts in addition to the terms in “GC + stretches”. Points above
the diagonal line indicate that the “GC + stretches” model outperforms the model on the x-axis.

Supplementary Figure 5: Comparison of − log10 p values and expression estimates of alpine com-
pared to other methods for the comparison across GEUVADIS sequencing center. p values and
expression estimates are shown for the set of transcripts with adjusted p value less than 0.1 for
either alpine or the method listed on the x-axis. alpine estimates of FPKM were converted into
TPM for the rightmost three plots in the bottom row.



Supplementary Figure 6: Total number of false positives at various false discovery rate (FDR)
cutoffs for the comparison across GEUVADIS sequencing center. Shown are the total number
of transcripts reported as differentially expressed among 5,676 transcripts from genes with two
isoforms, when comparing log2(FPKM + 1) estimates of GEUVADIS samples across sequencing
center. p values were adjusted using the Benjamini-Hochberg method. For kallisto, Salmon, and
Sailfish, log2(TPM + PC) was used with a pseudocount corresponding to 1 on the FPKM scale.



Supplementary Figure 7: Within-center standard deviation and mean of log2(FPKM+1) estimates
for the GEUVADIS dataset. Shown is the median (dark line), and 25% to 75% quantile (shaded
region) of within-center standard deviation of transcript estimates for 10 bins along the mean.
Only transcripts with FPKM estimates greater than 0.1 were included. For kallisto, Salmon, and
Sailfish, TPM estimates were scaled to correspond to the FPKM estimates of Cufflinks.

Supplementary Figure 8: Within-center coefficient of variation of log2(FPKM+1) estimates for the
GEUVADIS dataset. For transcripts with FPKM greater than 0.1, the within-center coefficient of
variation (standard deviation divided by mean) was calculated for each center and averaged. TPM
estimates were scaled to correspond to the FPKM estimates of Cufflinks. Right plot identical to
left, with a cropped y-axis.



Supplementary Figure 9: Consistency of estimated percent expression of isoforms across GEU-
VADIS center for 2,838 genes with two isoforms in which one isoform had FPKM greater than 0.1
as reported by Cufflinks, and with at least 1 basepair overlap of isoforms. Estimated percent of
the major isoform for center 1 shown on the x-axis (between 50% and 100% by definition). alpine,
Cufflinks, RSEM, kallisto, Salmon, Sailfish, and MISO had 21, 76, 96, 70, 88, 66, and 56 genes
with a change in estimated isoform percent greater than 35%, respectively.



Supplementary Figure 10: Volcano plots of differential transcript expression across GEVUADIS
center for genes with two isoforms, using RSEM, kallisto, Salmon, and Sailfish estimated FPKM
or TPM. Out of 5,676 transcripts, these methods reported 577, 521, 607, and 449 transcripts with
differential expression across center using an adjusted p value threshold of 1% (orange points), and
239, 187, 216, and 168 transcripts using a conservative Bonferroni family-wise error rate of 1% (red
points), respectively.



Supplementary Figure 11: Percent of false positives out of 5,676 transcripts at various log2 cutoffs
for different methods. Here a false positive was defined as a transcript with Benjamini-Hochberg
adjusted p value less than 1% and an estimated log2 fold change above a given threshold. Increasing
the log2 cutoff reduced the false positives in the null comparison across sequencing center, but it
should be noted that this procedure would also reduce sensitivity for a dataset containing true
differences. In particular, adopting a log2 cutoff of 2, corresponding to a greater than fourfold
change in transcript expression, would correspond to a great drop in sensitivity for many RNA-seq
experiments.



Supplementary Figure 12: Comparison of differences across GEUVADIS center for various alpine
bias models. At a threshold on Benjamini-Hochberg adjusted p values of 1%, the models reported
141, 488, and 66 transcripts differentially expressed out of 5,676, for the models “GC+str.” using
fragment GC content and stretches of high GC within fragments, “read start” using the Cufflinks
VLMM for read starts, and “all” using terms from the previous two models combined. The left-
most plot is the same as shown in Figure 3d, repeated here for ease of comparison. At a more
conservative Bonferroni threshold of 1% family-wise error rate, the models reported 37, 114, and
17 transcripts differentially expressed, respectively. See Methods for model details.

Supplementary Figure 13: Estimated bias parameters for the GEUVADIS dataset. (Left) The
0-order terms of the read start bias model estimated for the 5’ fragment end for one sample of
the GEUVADIS dataset. As in Supplementary Figure 2, the 0-order terms are shown for visual
simplicity, although the variable length Markov model (VLMM) used here has higher order (1-
and 2-order) Markov dependence for the middle positions. (Middle) The fragment length densities
calculated for GEUVADIS samples. (Right) The relative position bias curves calculated for GEU-
VADIS samples. The fragment GC content curves for the GEUVADIS dataset are shown in the
main text, in Figure 2e.



Supplementary Figure 14: Examples of estimated abundance across GEUVADIS sequencing center
for genes with two isoforms, for six methods. Sequencing center (1 or 2) is indicated on the x-axis
and estimated transcript abundance on the y-axis (FPKM for the first three methods and TPM
for the last three methods). Examples selected for large across-center differences for Cufflinks
and RSEM. Note that newer pseudoalignment-based methods kallisto, Salmon, and Sailfish had
similarly discordant estimates of transcript abundance across sequencing center as the genome and
transcriptome alignment-based methods Cufflinks and RSEM.



Supplementary Figure 15: Sashimi plots10 for genes with two isoforms for which methods other
than alpine predict isoform switching across sequencing center, as seen in Supplementary Figure 14.
Sashimi plot for USF2 shown in Figure 2c. Regions of genes that distinguish isoforms are shown,
except for CHPF and BASP1 where the entire gene is shown. In all cases, the abundance estimates
of alpine were concordant with the qualitative evidence from junction-spanning reads: expression
of a single isoform in SURF1, CHPF, and BASP1, and mixed isoform expression for PKN1 and
HNRNPUL1.



Supplementary Figure 16: MISO estimates of percent isoform expression were discordant across
GEUVADIS sequencing center for the six examples genes with FPKM estimates shown in Supple-
mentary Figure 14. MISO does not directly estimate transcript abundance, but provides estimation
and testing on percent isoform expression. The y-axis shows the estimated relative abundance for
one of the two isoforms out of total gene abundance. While the MISO method adjusts for varying
fragment length distributions across samples, it was unable for these example genes to correct for
the fragment GC bias that is modeled by alpine.



Supplementary Figure 17: ROC curve for the simulation of balanced design. A linear model was
used to analyze expression values as in Figure 3g, except with the conditions balanced across
sequencing center, and using a linear model with a blocking term indicating the sequencing center.
Unlike in the confounded design, here experiment-wide sensitivity was not lost for the methods that
do not model fragment sequence bias. Though the methods perform similarly here, with pAUC
around 0.9, it should be noted that this is a best-case scenario for the competing methods, as
the batches were known, the residual degrees of freedom were high, and therefore batch effects
could be removed from transcript abundance estimates by adding a blocking term to the linear
model. However, in the more common scenario in which batches are not known, this approach is
not applicable. In contrast, our approach of removing sample-specific fragment sequence bias by
estimating it directly produces (i) accurate within-sample estimates of transcript abundance and
isoform percentages and (ii) reduces false positives for relative abundance across samples in the
case of total or partial confounding, even when the batches are not known, or if sample-specific
deviations exist within batches. The right panel displays the partial AUC for the ROC curves with
false positive rate range in [0, 0.2], The partial AUC was scaled to take values between 0 and 1.



Supplementary Figure 18: Median absolute log2 fold error in estimating transcript expression levels
for all simulated samples, split by sequencing center. The left side provides the median error rate
over transcripts for those samples from GEUVADIS sequencing center 2 (orange curves in Figure
2e), which had less dependence of fragment rate on fragment GC content. The right side provides
the median error rate over transcripts for samples from center 1 (green curves in Figure 2e), which
had strong dependence of coverage on fragment GC content. kallisto, Salmon, and Sailfish TPM
estimates were compared to gold-standard TPM values. alpine had the lowest median absolute
error. For an example of log2 fold error over true expression values for individual simulated samples,
see Supplementary Figure 19.



Supplementary Figure 19: Example of log2 fold error over true simulated expression for two samples
and six methods. The first row shows the error rate over the true expression values for a simulated
sample based on a GEUVADIS sample from sequencing center 2 (less fragment bias), and the
second row for a simulated sample based on a GEUVADIS sample from center 1 (more fragment
bias).



Supplementary Figure 20: Absolute value of the error in estimating percent isoform abundance for
genes with two isoforms for the simulated dataset. The right panel displays the same information
as the left panel, but with the y-axis scaled to 0-10% to show the middle 50% of the data for
each method. The error is divided for each method into two groups separated by a black vertical
line, first for the 15 samples based on sequencing center 2 (less fragment bias) and then for the 15
samples based on sequencing center 1 (more fragment bias). For each gene, a single estimate for
the percent isoform abundance was calculated by averaging across 15 samples, and compared to the
true percent isoform abundance. The boxplots show the distribution of errors over all simulated
two-isoform genes. Most methods have increased error for the samples with more fragment bias,
except alpine and RSEM, with median absolute errors across genes remaining in the range 1-2%.



Supplementary Figure 21: Estimated bias parameters for the SEQC dataset. The top 5 panels
show the fragment GC content curves for the 36 samples, combined into a single plot, split by the
three sequencing locations, and lastly for library 5 which was prepared at a separate, fourth site.
These panels demonstrate that the site of library preparation determines the shape of the fragment
GC bias. For example, library 5 sequenced at the site “CNL” (orange curves) does not suffer from
the drop-out in coverage for high GC content fragments, unlike libraries 1 and 2 which were both
prepared and sequenced at that site. The bottom two panels demonstrate little difference in the
fragment length distribution and positional bias across preparation or sequencing site.



Supplementary Figure 22: Estimated bias parameters for the ABRF dataset. (Left) Fragment
length distribution and (Middle) fragment GC bias curves varied little across protocol. (Right)
positional bias showed a strong dependence on protocol. The expected accumulation of fragments
to the 3’ end of transcripts for poly-A selected libraries was observed.

Supplementary Figure 23: Number of false positives in comparing estimated transcript abundance
across protocol (poly-A selection vs ribosomal RNA depletion) for samples A, B, C and D in the
ABRF dataset. All methods were run with bias correction options turned on, including positional
bias correction for alpine, Cufflinks, RSEM, and Salmon. (Left) Using Benjamini-Hochberg adjusted
p values, controlling at 1% FDR and (Middle) using Bonferroni correction controlling at 1% FWER.
(Right) Number of false positives for different methods at varying FDR cutoffs. Any differences
found across protocol are categorized as false positives because it is known that the sample replicates
(reference samples or defined mixtures thereof) should have identical transcript abundances. The
total number of false positives at 1% FDR is extreme (out of ∼28,000 transcripts with mean
Cufflinks FPKM > 0.1) suggesting that current computational methods for removing bias can not
effectively produce protocol-invariant estimates.



Supplementary Figure 24: Mixing ratios for C/D over A/B in the ABRF dataset, split by protocol
and by method for transcript abundance estimation. Transcripts in the top 25% for each method
out of those with FPKM > 0.1 for both A and B samples are shown. The red line depicts the
expected mixing ratio, including a correction for differences in mRNA / total RNA in samples A
and B (see Methods with reference to Su et al. 11). The oranges lines depict 10% above and below
the expected mixing ratio.



Supplementary Figure 25: The fraction of transcripts with abundance estimates within 10% of the
expected mixing ratio for the ABRF samples, split by protocol. For examples of the mixing ratios,
see Supplementary Figure 24. Only transcripts in the top 25% of abundance estimates were used,
and requiring that abundance estimates be positive for both A and B samples (FPKM > 0.1).
alpine had relatively high recovery of the expected mixing ratio, within 5% of the top method,
RSEM for both protocols. Over all methods, the poly-A selected samples had higher recovery of
expected mixing ratio.
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